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Abstract

An analysis of the pressure field within a pipe is carried out using simplified formulations of pipe
acoustics. The fluid contained within the pipe is considered non-viscous, while the flow velocity of the fluid
is assumed to be smaller than the speed of sound.
The analysis is limited to frequencies which are well below the pipe ring frequency, i.e., at which only

simple waves can propagate. Expressions and diagrams are given which specify the applicable frequency
range in each particular case.
Three invariant functions of the internal pressure field are evaluated. These functions allow for the

determination of the following quantities: base pressure spectrum (spatial mean r.m.s. value), lower and
upper bounds of the pressure spectrum for the entire pipe, pressure spectrum at an arbitrary position, speed
of sound in the contained fluid and fluid flow velocity.
Experimental identification of these quantities requires simultaneous measurement at three points. A few

measurements carried out on one air-filled and one water-filled pipe have demonstrated the potential of
pipe invariant functions for acoustical analysis.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

At lower frequencies, well below the ring frequency of the pipe, pipe vibrations are similar to
that of a beam of deformable cross-section which not only can move in flexure but also axially and
can expand in radius. If the fluid within the pipe is heavy, coupling between the fluid and the pipe
wall can affect vibration even at low frequencies. In order to analyze pipe vibration and fluid
pressure pulsations in a meaningful way, use of a pipe model in more detail than that of a beam
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becomes necessary. Such a model can fulfil two roles: produce results closer to reality but also set
limits to the range of lower frequencies within which the pipe acoustics is still simple enough to
allow not too demanding experimental analysis.
The model used here is that of a fluid-filled circular cylindrical shell, being the closest known

model of a deformable waveguide. Using the exact expressions for pipe motion from this model,
low-frequency simplifications will be made. It should be pointed out that the exact expressions of
pipe vibration and the resulting simplified ones will be obtained on the basis of the so-called thin-
wall theory. Most of the smaller pipes have thickness-to-diameter ratios above the thin-wall
theory limit. However, this will not appear as a drawback in the present analysis, as the effects
restricting the results will apply to very thin pipes only. In particular, the limitations of the simple
pipe behaviour which are applicable to frequencies much lower than the ring frequency will
intrinsically not apply to thick pipes.
The acoustics of circular cylindrical shells has been analyzed by a number of researchers. Basic

notions of fluid–structure interaction in cylindrical shells can be found in Refs. [1,2]. A detailed
account of vibracoustics of fluid-filled shells was given by Fuller and Fahy [3], as well as by M .oser
et al. [4]. Thorough explanations were made about the nature of different waves and the evolution
from one type to another with frequency. An original method was used by Bobrovnitskii and
Tyutekhin in Ref. [5] to compute the shell wave characteristics, using a distributed impedance
concept to account for the coupling. An alternative method was employed by the author [6], using
polynomial expansion of the fluid loading function for computing the wave characteristics and
energy flow.
The techniques used in Refs. [3–6] enable an exact computation to be made of the dispersion

law for a fluid-filled pipe which sets grounds for the development of comprehensive measurement
techniques.
Verheij has demonstrated that simple measurements on fluid-filled pipes are feasible under

certain conditions where basic pipe motions are separable to allow individual treatment of
different wave types, [7,8]. In Ref. [9] an approach was presented where unseparable motions
could be treated. Bourget and Fahy discussed multi-transducer measurements in Ref. [10] adapted
to complex vibrational behaviour of cylindrical shells at higher frequencies. Some original
measurement techniques were further reported by de Jong and Verheij [11,12] and later by Trdak
[13], which account for simultaneous propagation of different modes of vibration. By analyzing
pipe vibration from the point of noise radiation Feng has found that the pulsatory pipe motion
can be an efficient sound radiator [14]. The same author has carried out measurements of higher
order waves using a technique similar to that of Bourget and Fahy [15]. In Ref. [16] this author
has outlined some practical techniques for the analysis of pressure pulsations in pipes of small
diameter.
The analysis which follows concerns pressure fluctuations in a straight fluid-filled pipe. Both the

pipe wall and the contained fluid are assumed lossless. Although not strictly valid, this assumption
will cause inaccuracies of second order only, but will in turn simplify the analysis considerably.
The flow speed is taken into account, but is considered to be much smaller than the speed of
sound in either the fluid or the pipe material. The pressure fluctuations are of prime concern.
These are supposed to originate from hydraulic sources, such as pumps in regular operation,
which create pressure waves of plane wave type uncontaminated by cavitation or flow-generated
turbulence.
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2. Theoretical background

Pressure pulsations propagate in pipes at a speed which is lower than that in an infinite medium.
The decrease of speed of sound is an effect of fluid coupling with the motion of the pipe wall. A
rigorous analysis of pressure pulsation has to take coupling into account. This will be made here
by taking the full series development of the pressure field and later simplify this representation by
keeping only the lower order terms which adequately describe this field at lower frequencies.
The pipe will be considered as a cylindrical circular shell specified by its outer diameter D and

thickness h as well as material properties: Young’s modulus E; mass density rs and the Poisson
ratio u. The fluid within the pipe is characterized by its mass density rf and speed of sound cfN;
the symbol N implying the speed in the unbounded fluid.

2.1. Exact solution of pipe vibration

The exact solution will be briefly recalled in this section as it will be required later as the basis
for a simplified one. The exact solution used here is based on thin-wall theory of a vibrating
cylindrical shell which satisfies Kirchhoff’s assumptions on the linearized displacement
distribution across the wall thickness. Several differential shell operators have been developed
around this theory, see e.g., Ref. [17]. The one by Fl .ugge [18] will be used in the present analysis.
During vibration the pipe cross-section deforms. Any deformation can be decomposed into

harmonic components of circumferential orders n ¼ 0; 1, 2y . Of particular importance for pipes
are the deformations of the order n ¼ 0; called the ‘‘breathing mode’’, and that of the order n ¼ 1;
the ‘‘flexural mode’’. To each order n there correspond a number, theoretically infinite, of distinct
axial wave numbers. These can be real, imaginary or complex thus representing propagating,
evanescent or quasi-propagating waves, respectively. The latter are similar to propagating waves
but with a decaying amplitude. The global pipe motion in a general case will be a superposition of
different waves.
The radian frequency and the wave number are usually put in a non-dimensional form, the

former by dividing it by the pipe ring frequency csN=a; the latter by multiplication by the mean
pipe radius a:

O ¼
oa

csN

; k ¼ ka where a ¼ ðD � hÞ=2; csN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rsð1� u2Þ

s
; ð1Þ

csN is the speed of sound in the unbounded sheet of pipe material, E is Young’s modulus and rs is
the mass density of the pipe material.
It has been found [3,4] that only a few waves of orders n ¼ 0 and 1 can propagate in fluid-filled

shells well below its ring frequency, O51; all other waves being of decaying type. Propagating
waves include two types of plane waves and torsional waves—all of order n ¼ 0—as well as
flexural waves, of order n ¼ 1: Torsional waves of order n ¼ 0; the only ones which do not couple
wall vibration to fluid motion, will be not analyzed here in view of their limited importance in pipe
acoustics. Each wave, apart from the torsional one, propagates in both the fluid and the pipe wall
at the same wavelength due to coupling. Waves of orders n > 1; called higher order waves, can
propagate only above a certain cut-on frequency. This frequency, depending on pipe diameter,
thickness, wall parameters and fluid parameters, increases with wave order n:

G. Pavi!c / Journal of Sound and Vibration 263 (2003) 153–174 155



Fig. 1 shows a few lowest wave numbers corresponding to order n=0 for a water-filled steel
pipe with thickness-to-diameter ratio 1

40 (left) and
1
10 (right). The two types of plane waves which

can propagate from zero frequency are of different wave numbers. One of higher wave number
will be termed ‘‘fluid wave’’ as its energy is predominantly contained in the fluid. The other one
will be termed ‘‘longitudinal wave’’ as its energy is predominantly contained in the pipe wall
exhibiting axial motions. These two waves are the subject of the present investigation. The terms
fluid and longitudinal are certainly not optimal in the strict sense, but can facilitate the distinction
between the two as other waves will not be analyzed.
The first higher wave will cut on at OE0:8 and 0:9 in the two cases displayed. The evanescent

waves, presented by thin lines, are of relatively high wave number, i.e., these waves decay rapidly.
So do the quasi-propagating waves, where the imaginary part of the wave number, responsible for
spatial attenuation, is represented by dotted lines (only one is seen in the actual figure, the others
being higher up). All of this means that, providing the frequency stays moderately low, the fluid
and the longitudinal waves are of sole concern where the mode n ¼ 0 is concerned.
Fig. 2 shows the wave numbers for the pipe of thickness-to-diameter ratio 1

40
; corresponding to

orders n ¼ 126: Orders higher than 1 have non-zero cut-on frequencies which rise with the order
number. Above the cut on all orders exhibit approximately square-root of frequency dependence
only to deviate at higher frequencies from this law. Evanescent and quasi-propagating waves for
orders n > 1 are unimportant at frequencies lower than the corresponding cut-on frequency as the
imaginary part of the wave number of these stays high. Consequently, at low frequencies up to the
cut on of the order n ¼ 2; only the flexural evanescent waves are of practical importance as these
are of rather small wave number extending down to zero frequency.
At or close to cut-on frequencies, the imaginary part of the wave number of evanescent or

quasi-propagating waves becomes small implying that the penetration depth of these waves
increases well beyond the immediate vicinity of pipe ends or excitation points.
The limit of simple pipe behaviour where only breathing mode is concerned, n ¼ 0; is the first

non-zero cut-on frequency of this mode.

Fig. 1. Wave number diagram for a water-filled steel pipe: order n ¼ 0: Thickness/diameter: 1
40
(left), 1

10
(right). Thick

line: propagating waves, thin line: evanescent waves, dotted line: quasi-propagating waves—imaginary part.
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The analysis will concern pressure pulsation at lower frequencies. It can be thus restricted to
axisymmetric motion in which the wall displacement in cylindrical co-ordinates x2r can be split
into orthogonal components u and w; Fig. 3.

2.2. Simplified solution

In this section the governing relationship for the acoustical pressure in the pipe will be given in
terms of simple analytical formulae intended to allow the theoretical formulation of the analysis
technique described in Section 3. The simple formulae, applicable only to frequencies well below
the ring frequency, will be deduced from a complete solution describing the pipe behaviour in
terms of acoustic waves in the contained fluid and vibration waves in the pipe wall.
While pressure pulsation in a fluid-filled pipe is produced by any type of wave (except by

torsional waves as mentioned above), fluid waves which are of order n ¼ 0 play a particular role in
pipe acoustics as they are easiest to excite by fluid-borne sources. At frequencies well below the
ring frequency the n ¼ 0 mode is made up of fluid and longitudinal waves only. At these
frequencies pressure pulsations are also excited by flexural waves, but the energy carried by these

Fig. 2. Wavenumber diagram for a water-filled steel pipe: orders n ¼ 126: Thickness/diameter= 1
40
: Thick line:

propagating waves, thin line: evanescent waves, dotted line: quasi-propagating waves—imaginary part. Gradual

increase of cut-on frequencies for increasing orders is clearly seen. A detailed analysis of dispersion curves can be found,

e.g., in Ref. [3].

Fig. 3. Pipe geometry and displacement notation.
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pulsations is extremely low as the instantaneous pressure is linearly distributed over the cross-
section about zero mean value.
Fig. 1 shows that, at lower frequencies, the k2o dependence is approximately linear. The

simplified relationship between the axial wave number and frequency for the mode n ¼ 0;
applicable to pipes of high ring frequency, can be thus represented by

k ¼ ka ¼ BO; ð2Þ

with the proportionality coefficient B equal to [9]

Bf ¼
csN

cfN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2Zþ u2

1� u2
c2fN

c2sN

s
; Bs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

u2½ðcsN=cfNÞ2 � 1�

½ðcsN=cfNÞ2 � 1�ð1� u2Þ þ 2Zþ u2

s
; Z ¼

rf

rs

a

h
; ð3Þ

where subscripts f and s refer to fluid and longitudinal (solid) waves, respectively. The speed of
sound, either in fluid or wall, reads

%
c ¼

o
k
¼

csN

B
:

If the pipe is made of metal, the speed of sound in the fluid will be much smaller than that in the
pipe wall, c2fN5c2sN: The second term in the expression for Bf will be thus insignificant unless the
pipe wall is very thin making Zb1: This implies Bf EcsN=cfN which in turn means that the speed
of sound in the fluid of thick pipes will be close to that in an unbounded fluid, cfN:
Since 0ouo0:5 and Z > 0 the second term under the square root sign in the expression for Bs;

(2), is always smaller than unity. In most cases it will be much smaller than unity. This means that
the speed of longitudinal waves will be little affected by the presence of fluid, staying very close to
csN: The lower the Poisson ratio, the smaller the contribution of the second term. With u
approaching zero, i.e., in the absence of lateral contraction, this term vanishes.

2.3. Pressure pulsation in pipes

Fig. 4 shows a comparison between the exact and the approximate solution (2) of non-
dimensional wave numbers of propagating waves corresponding to n ¼ 0: The approximate
simple formula is seen to hold below OE0:4 (thin pipe) and OE0:7 (thick pipe) for fluid waves
and below OE0:7 for longitudinal waves. These limits will usually satisfy most applications.
A more severe limiting factor where upper frequency limit is concerned will be the presence of

higher order waves which become propagating at fairly low frequencies in pipes of low ring
frequency. These waves will couple the internal pressure with wall motions, which will result in an
interference between the n ¼ 0 waves and higher order waves. The present analysis is inapplicable
to cases where higher order waves are present. It thus becomes necessary to identify the applicable
frequency range, i.e., the cut-on frequencies of higher order waves.
The cut-on frequencies corresponding to waves of different order can be found by either exact

or approximate computation. A simple approximate formula for the cut-on frequency of nth
order wave reads [9]

Oc
n ¼

oc
na

csN

E
bnðn2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2ð1þ Z=nÞ þ b2ðn2 � 1Þ2
q ; b ¼

h

2
ffiffiffi
3

p
a
: ð4Þ
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Upon neglecting the insignificant third term under the square root, the lowest non-zero cut-on
frequency, that of n ¼ 2 mode, becomes

Oc
2 ¼

oc
2a

csN

E
6bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2Z

p ¼
h

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

5þ
rf

rs

d

h

vuuut o0:775
h

d
; d ¼ 2a ¼ D � h: ð4aÞ

The thinner the pipe and the heavier the fluid the lower will be the cut-on frequency. Fig. 5 shows
the cut-on frequencies obtained by exact computation for steel pipes filled with: (a) light fluid—air
compressed at 10 bar and (b) heavy fluid—water. Even a light fluid can make the first cut-on
frequency descend well below 1 kHz if the wall thickness is small.
If the pipe analysis is done by experimental means, one can extract n ¼ 0 mode out of total pipe

motion by using a suitable array of transducers and an appropriate data processing. For example,
the sum of signals coming from four transducers, either pressure or vibration sensitive ones,
spaced equidistantly at the same axial position around the pipe circumference will be insensitive to
n ¼ 1 and 2 waves. In this way simple analysis of pipe pulsations can be extended to frequencies
up to the cut on of the n ¼ 3 mode. The upper frequency limit can be increased further still by
using more transducers. If, however, the measurement in pipe is done without any special means
to filter out undesirable modes of motion, then the upper frequency limit defined by (4a) should be
respected.
It should be pointed out that the extracted n ¼ 0 mode at frequencies below the first cut on will

still contain all the waves belonging to this mode, i.e., two propagating ones—fluid and
longitudinal—as well as evanescent waves. By choosing measurement positions away from the
pipe ends, connections or discontinuities (half a wavelength or so), the contribution of evanescent
waves will diminish. The influence of longitudinal waves will not diminish with distance; however,
these waves will be as a rule very weakly coupled to the fluid and in most cases their effect on the
measurement of pressure pulsations will be negligible, see Section 2.4. If this is not the case, some

Fig. 4. Comparison of exact (thin line) and approximate (thick line) wave number solutions for zero order mode.

Water-filled steel pipe, thickness/diameter= 1
40
(left) and 1

10
(right).
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complex transducer arrays can be used to separate longitudinal from acoustical waves, see e.g.,
Ref. [9].
One particular type of transducer seems suitable for the detection of pressure pulsation in pipes.

This is a strain-sensitive wire wound around the pipe, first reported by Pinnington and Briscoe
[19]. If the number of turns is an integer, then the strain in the pipe wall induced by the
deformation will be proportional to the radial displacement of n ¼ 0 mode only, which in turn is
proportional to internal pressure pulsation.

2.4. Influence of solid waves

In the principal analysis, Section 3, it is assumed that the pressure pulsations propagate in the
fluid at a unique speed of sound. As already pointed out, longitudinal waves will create pressure
pulsations in the fluid which will add to the pulsations of fluid waves. As the sound speeds of the
two waves are different, the analysis will be corrupted if the level of pulsations due to longitudinal
waves becomes comparable to that of the fluid waves. In this section a simple analysis will be
carried out to set-up a criterion for neglecting the influence of longitudinal waves.
One way to assess the contribution of the pressure induced by longitudinal waves ps would

consist of computing the level difference between this pressure and that due to fluid waves pf at a
given value of the ratio of energy flow in the fluid and in the pipe wall. It could be argued that ps

can be considered as negligible providing its level is much lower than that of pf at energy flow
equally partitioned between the fluid and the pipe wall. This argument is not more than intuitive,
but in the absence of any concrete indication of pipe vibration and/or pressure levels it can serve
as a rough guide not completely devoid of physical reality.
If more than one wave type propagates in the fluid, the fluid energy flow is not constant along

the pipe, [6]. Part of the energy is exchanged between the wall and the fluid along the pipe at a rate

Fig. 5. First non-zero cut-on frequency, order n ¼ 2; of a steel pipe filled with: left—light fluid (air compressed at
10 bar), right—heavy fluid (water).
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corresponding to the difference of the wave numbers of two waves. The total energy flow, being
the sum of the two, remains constant (providing the dissipation losses are negligible as assumed).
As the energies in the fluid and the wall vary along the pipe, much as does the total acoustic

pressure in the fluid, spatial averaging will be needed to get representative values of the two. For
the sake of simplicity the averaging will be done over a hypothetically infinite pipe since averaging
over a finite length would unnecessarily make the result dependent on details with little effect on
the main findings.
In a general case, two waves, one fluid and one longitudinal, will simultaneously propagate in

the +x direction while two additional waves of the same type but different amplitudes will
propagate in the �x direction. The resulting acoustical pressure in the pipe will be the sum of four
waves.
The spatially averaged levels of pressures pf and ps as well as the levels of energies in the fluid

and the pipe wall are evaluated in the Appendix A. Eq. (A.7) gives the ratio of spatially averaged
mean-square pressures induced by longitudinal and fluid waves as a function of the ratio of
spatially averaged energy flows in the fluid and the pipe wall. This ratio is shown to be
independent of frequency in the lower frequency range where the linear relationship (2) holds. The
pressure ratio depends on the coefficient r; i.e., the ratio of amplitudes of oppositely propagating
waves. If r is the same for longitudinal and fluid waves, the pressure ratio gets equal to the factor
F; Eq. (A.7).
Fig. 6 shows the ratio of averaged pressures ps and pf ; expressed in dB, for two cases: steel pipe

filled with water (left) and steel pipe containing air at 10 bar static pressure (right). At equal level
of fluid- and solid-borne energy flows (thick curve 0 dB) the level of pressure induced by f waves is
much higher than that induced by s waves. In the case of water-filled pipe, the difference of levels
of the two pressures is around 20 dB, getting even higher with the thickness-to-diameter ratio
increasing towards values typical of most pipes. In the case of the air-filled pipe, the fluid-borne
generated pressure is of much higher level than the solid-borne one, even at energies in the fluid
much smaller than the energy in the wall. It can be concluded that wall vibrations of pipes
containing light fluids, like gas, will not produce any noticeable effect on pressure pulsation in the

Fig. 6. Ordinate: dB level difference of pressure pulsations ps and pf due to longitudinal and fluid waves, expressed by

the factor F; at different values of dB level difference of the solid- and fluid-borne acoustic powers. Steel pipe filled with:
left—light fluid (air compressed at 10 bar), right—heavy fluid (water).
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fluid. If however the fluid is heavy, the same condition requires that the energy in the pipe wall be
smaller than the energy in the fluid.

3. Pipe analysis using invariant functions

In this section some simple techniques are described which provide potentially useful
information about the pressure fluctuations in the pipe.
As this section deals exclusively with fluid waves, the subscript f used throughout Section 2 to

indicate fluid-related quantities will be omitted. The pipe excitation is supposed to generate the
pressure which originates from fluid-borne waves only. According to the findings in Section 2 this
will occur always if the fluid is light, and in conditions of predominantly fluid-borne excitation if
the fluid is heavy.
It will be assumed that the fluid is in steady motion. This condition makes the analysis more

generally applicable and more accurate. The flow speed is supposed to be much smaller than the
speed of sound in the fluid. The condition of fluid at rest will then be considered as a specific case
to which the results of Section 3 will equally apply.

3.1. Basic relationships

Due to the fluid flow a Doppler shift will take place, making the wave numbers of fluid waves
propagating in opposite directions unequal (bold symbols denote complex quantities)

pðxÞ ¼ Aþe
jkþx þ A�e

jk�x; ð5Þ

where

kþ ¼
o

c þ v
¼

k

1þ M
; k� ¼

o
c � v

¼
k

1� M
; k ¼

o
c
;

M denoting the Mach number. By introducing a modified wave number k:

k

1� M2
-k; i:e: kþ ¼ kð1� MÞ; k� ¼ kð1þ MÞ:

Eq. (5) can be factorised by a term containing Mach number

pðxÞ ¼ ejkMxðAþe
�jkx þ A�e

jkxÞ: ð5aÞ

The pressure cross-spectrum between two points, xa and xb; is then obtained as follows:

Sab ¼ pðxaÞ
�pðxbÞ

¼ ejkMðxb�xaÞ Aþj j2e�jkðxb�xaÞ þ A�j j2ejkðxb�xaÞ þ 2R AþA
�
�e

�jkðxbþxaÞ
� 	
 �

; ð6Þ

where an asterisk denotes the complex conjugate and R real part. Its power spectrum counterpart
is simply obtained by setting xa ¼ xb:

Saa ¼ pðxaÞ
�pðxaÞ ¼ Aþj j2þ A�j j2þ2R AþA

�
�e

�2jkxa
� 	

: ð6aÞ

By modifying the phase of the cross-spectrum proportionally with frequency as

#Sab ¼ Sabe
jkMðxa�xbÞ ð7Þ
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a modified cross-spectrum is obtained, denoted by a hat, representing physically the spectrum
which would have been obtained if the observation points at xa and xb were moving relative to
each other with the flow speed v: The moving cross-spectrum can be easily obtained by phase
shifting the ordinary cross-spectrum by a function of the actual Mach number, as defined by
Eq. (7). The moving cross-spectrum will be used in the remaining analysis.
It follows from Eq. (6) that the frequency-dependent quantity Y;

Yab ¼
I #Sabðxa;xbÞ
n o
sin kðxa � xbÞ½ �

¼ Aþj j2� A�j j2; I-imaginary part; ð8Þ

is an invariant of space as the right-hand side part of Eq. (7) does not depend on x. In other
words, the function Yab remains the same whatever are the positions of points xa and xb: Being
equal to the difference of amplitude squares of oppositely travelling fluid waves, it represents the
scaled acoustic intensity of pressure pulsations W :

Yab ¼ rcW : ð8aÞ

By combining cross- and power spectra, the real and imaginary parts of the amplitude cross
product are obtained:

R ¼ R AþA
�
�

� 	
¼
2Rð #SabÞ cos kðxa � xbÞ½ � � Saa cosð2kxbÞ � Sbb cosð2kxaÞ

4 sin2 kðxa � xbÞ½ �
; ð9aÞ

I ¼ I AþA
�
�

� 	
¼
2RðuSabÞ sin kðxa � xbÞ½ � � Saa sinð2kxbÞ � Sbb sinð2kxaÞ

4 sin2 kðxa � xbÞ½ �
: ð9bÞ

It turns out that the power spectrum at an arbitrary position x can be represented in terms of two
new invariant functions, one real Sm and one complex Sv:

Sxx ¼ Sm þ 2 R Sv 
 e�2jkx
� 	

ð10Þ

which are simple linear combinations of R and I :

Sv ¼ R þ jI

Sm ¼ Aþj j2þ A�j j2¼ Saa � 2 R cosð2kxaÞ þ I sinð2kxaÞ½ �

¼ Sbb � 2 R cosð2kxbÞ þ I sinð2kxbÞ½ �: ð11Þ

The invariant Sm which is a real-valued function can be considered as a base spectrum of pressure
pulsations. Its complement, the complex-valued invariant Sv can be considered as a modulation
spectrum having the real and imaginary parts which oscillate along the pipe about zero mean
value. These two functions can be used to predict pressure spectrum at any position x of the pipe,
as seen by Eq. (10). In other words, once the two invariants Sm and Sv are identified, the pulsation
spectrum is determined for all points of the pipe. This statement is valid as long as Eq. (5) is valid:
in the section of the pipe considered there must be no sources or sinks or other phenomena, such
as turbulence, which may make Eq. (5) invalid.
By inspecting Eqs. (8) and (9b) one can notice that ill-conditioning of the functions Y; R and I

will take place at frequencies where half the wavelength of sound in fluid becomes an integer
fraction of the distance between the observation points xa and xb: This coincidence effect is a
problem common to measurements in waveguides. It can be remedied by either taking the
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ill-conditioned frequency parts of signals out of the analysis or suppressing the coincidence by
adding one transducer and employing at each frequency a matched transducer combination which
does not create singularities.

3.2. Speed of sound, flow velocity and spectral range

All of the invariant functions can be obtained by measuring pressure pulsations at two points
on the pipe providing the sound speed and flow velocity are known. These values will rarely be
known precisely. A technique described below enables the computation of the two parameters
from experimental data.
Since Y is invariant with respect to the positions of two observation points, the following

function defined for three observation points xa; xb and xc;

Zabc ¼ I uSab

� 	
sin kðxa � xcÞ½ � � I uSac

� 	
sin kðxa � xbÞ½ �; ð12Þ

should theoretically be zero at any frequency. The Z function contains two distinct variables:
speed of sound in the fluid c, contained in the wave number k, and Mach number M, contained in
the exponential term of the moving cross-spectrum.
To compute sound speed in the fluid and flow velocity the function Zabc as defined by Eq. (12) is

used. The values of sound speed c and Mach number M are considered as input parameters (7).
Zabc should theoretically vanish at all frequencies provided the true c and M are supplied.
However, measurement imperfections and simplifications made in evaluating this function will
never reduce it to zero at all frequencies simultaneously. One way to make a sensible estimate of c
and M would thus be to integrate the absolute reciprocal of Zabc across the effective frequency
range of pressure pulsations [o1; o2],

Cðc;MÞ ¼
Z o2

o1

do
Zabcðo; c;MÞj j

ð13Þ

and find particular values c0 and M0 at which C is at maximum. This can be done by using an
iteration procedure whereby c0 and M0 are given different values until a best fit of measurement
data is found. The values of c0 and M0 identified in this way then represent the actual speed of
sound and Mach number defined in the best-fit sense.
Initial values of sound speed can be determined from Eq. (3) and entered in a search loop which

scans the range of sound speed and Mach number values to find the maximum of the cost
function. Once c and v are found, the pressure field invariants can be readily computed by using
Eqs. (9) and (11).
The base spectrum Sm equals the spatial average of pressure pulsations. This quantity will most

efficiently characterize the pressure within the pipe in an average sense.
It follows from Eq. (10) that the admissible range of values of pressure spectrum at any

frequency are given by

Sm � 2 Svj jpSxxpSm þ 2 Svj j: ð14Þ

The last inequality specifies a spectral range which has to accommodate the pressure spectrum at
any point along the pipe. It can be employed for a conservative prediction of the r.m.s. pressure in
the pipe.
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As Sm equals the sum of amplitude squares while Y (defined by Eq. (8)) equals their difference,
the mean-square spectra of the waves propagating in positive and negative directions, S+ and S�

respectively, can be easily found from

Sþ ¼ ðSm þYÞ=2; S� ¼ ðSm �YÞ=2: ð15Þ

4. Measurements

By using Eqs. (3), (8), (9) and (12) a computer program was made in Matlab for pipe pressure
analysis. It was then used on measurement data collected in two experiments described below.

4.1. Air-filled pipe

A few measurements were done on a f27mm, 2mm thick steel pipe connected by a flexible hose
to a vibrator cooler fan (Goodmans V50). The free end of the pipe had three flute-like holes which
could be individually opened or closed to control the flow of air through the pipe; see Fig. 7. Three
piezoelectric pressure transducers PCB 106B spaced by 120mm were flush-mounted close to the
pipe inlet. A four-channel FFT card OROS 25 connected to a PC was used for spectrum analysis.
Measurements were done in five regimes resulting from different combinations of open holes;

see Table 1 (third hole was always kept closed). The fifth regime represents a particular case, that
of zero fluid flow produced by fully closing the pipe.
Fig. 8 shows the r.m.s. spectrum of measured pressure pulsations in regime 2, energy averaged

across three measurement positions. A peak at 700Hz corresponds to the blade passing frequency
of the fan. Fig. 9 shows the corresponding cost function C evaluated for the range of sound speed
and flow velocity values. A distinct single peak is noticeable.
Fig. 10 shows the cost function for the first four regimes using the grey scale. The scale is

normalized to 1, ranging from 1
25
to 1 on graphs (a–c) and from 1

18
to 1 on (d). The maximum,

indicated by the crossing of the two dotted lines, shows the best-fit value for both the flow velocity
and sound speed.
In parallel with the acoustic measurements, the flow velocity was estimated by using a hand-

held anemometer, Testoterm 4400, complemented by an adapter to fit the holes and end opening.
The temperature of the air inside the pipe was monitored by a small thermo probe. This enabled
an estimation of sound speed in the pipe to be made.

Fig. 7. Test rig scheme of air-filled pipe.
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Table 2 gives the comparison of two groups of measurements. The discrepancy in flow velocity
measurement could be attributed to some extent to errors induced by the anemometric technique
used. The overall matching achieved between the acoustical and traditional measurements is seen
to be very good, indicating the robustness of the developed method.

Table 1

Measurement regimes on air-filled pipe

Regime End opening Hole 1 Hole 2

1 C O C

2 C C O

3 C O O

4 O C C

5 C C C

C–closed, O–open.

Fig. 8. Mean r.m.s. pressure spectrum Sm of air-filled pipe—regime 2.

Fig. 9. Air-filled pipe: cost function C for the determination of sound speed and flow velocity obtained by

measurements in regime 2.
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By looking at Eq. (8), one can see that the function Y becomes more and more error sensitive
the smaller the difference of the amplitudes of oppositely propagating waves. Thus, conditions
close to total acoustic reflection in the pipe will unfavourably affect results. This can be seen in
Fig. 11 which shows the C function plot for regime 5 where the pipe was fully closed. No distinct
maximum can be seen, the C function pattern being unevenly spread all over the parameter range.
In fact, the difference between maximum and minimum values of the cost function is in this case a
trivial 3.6% which is an unusable value.

Fig. 10. Air-filled pipe: comparison of cost functions for regimes 1–4, clockwise from top left. Dotted lines indicate

position of maximum. Extreme values: black 0.04 (0.055 for diagram 4); white 1.

Table 2

Comparison of measurement results on air-filled pipe

Regime Temperature

(1C)

Speed of sound via

temperature

readings (m/s)

Speed of sound via

acoustic measurement

(m/s)

Flow velocity via

anemometer

readings (m/s)

Flow velocity

via acoustic

measurement

(m/s)

1 25 347 346 18 17

2 25 347 348 18 17.5

3 27 348 349 26 26

4 27 348 348 36 34.5
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While the first three regimes, i.e., the ones with closed end opening, produced sharp maxima,
regime 4 produced instead a fairly smeared arc peaking nevertheless at correct values of c and v.
The reason for this peculiarity can be seen in Figs. 12(a) and (b): unlike in regimes 1–3, in regime 4
the difference of the amplitudes of positively and negatively propagating waves is small, thus ill
conditioning the processing algorithm. The spectra in frequency bands around the coincidence
frequencies, which at the transducer spacing of 0.12m were at E1450 and E2900Hz, were
contaminated by errors and were consequently deleted from the processing.

4.2. Liquid-filled pipe

A f33.5mm, 3mm thick steel pipe, part of a hydraulic test rig used for acoustic measurements,
was equipped with flush mounted piezoelectric transducers (Kistler 7031). The water in the circuit
was driven by a centrifugal pump. Two hydraulic anechoic tubes were inserted in front and at the
rear of the measurement section to suppress pump noise,1 see Fig. 13. The noise in the fluid was
actually produced by a valve within the measurement section. As the flow velocity was small in
comparison to sound speed, around 2m/s, the value of the Mach number was set to 0.
The measurement array consisted of three transducers. A fourth transducer was mounted

downstream about half a metre away. It provided a signal for comparison with the spectrum
predicted by the measurement array according to Eq. (10).
Fig. 14 shows the r.m.s. pressure spectra measured by three array transducers (thin lines) and by

the fourth control transducer (thick line). The spectrum at the fourth point was computed by
using Eq. (10). As it closely matches the measured spectrum, it is not shown explicitly. Rather the

Fig. 11. Air-filled pipe: cost function of fully closed pipe, regime 5. Extreme values: black 0.964; white 1.

1The role of an anechoic tube is to suppress reflections of sound waves. Each anechoic tube consisted of a thin inner

cylindrical perforated metallic tube enveloped by a thick flexible damped hose. This resonator device has a good

absorption over a wide range of frequencies owing to the perforation rate continuously varying over the tube length.
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Fig. 13. Test rig scheme of water-filled pipe.

Fig. 12. Air-filled pipe: r.m.s. spectra of waves propagating towards pipe end (S+, thick line) and from the end (S�, thin

line). Top: regime 2; bottom: regime 4.
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difference in the levels of the two spectra is plotted at the lower part of Fig. 14 in dB scale. It can
be seen that this difference rarely exceeds 0.5 dB which confirms the robustness of the spectrum
recovery method.
Fig. 15 shows the base spectrum and the spectrum range obtained from Eqs. (11) and (14). At

lower frequencies the difference between pressure maxima and minima can attain as much as 15–
20 dB. The difference decreases with frequency, and the reason is seen in Fig. 16 which displays
the spectra of positive and negative propagating pressure waves computed by using condition
(15). The difference of the two which rises with frequency clearly indicates that absorption by the
anechoic tubes increases with frequency which in turn reduces the r.m.s. pressure variations along
the pipe axis.

5. Conclusions

Based on simplifications of an exact theoretical representation of the acoustic pressure
pulsation transmission in pipes with flow, three invariant functions were evaluated. These
functions can be obtained from three transducer measurements and can be used to used to

Fig. 14. Water-filled pipe: Top: r.m.s. pressure spectrum Sxx at three array transducers (thin lines) and the control

transducer (thick line). Bottom: Difference between measured and predicted levels of r.m.s. pressure at the control

transducer position.
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determine: base pressure spectrum (spatial mean r.m.s. value), pressure maxima and minima,
pressure spectrum at a defined position in pipe, speed of sound in the contained fluid, fluid flow
velocity.
Measurements carried out on one air-filled and one water-filled pipe have demonstrated the

potential of pipe invariant functions for acoustical analysis. In many cases the measurement of
flow velocity by acoustical analysis will be possible.

Fig. 16. Water-filled pipe: r.m.s. spectra of positive propagating (Sþ; thick line) and negative propagating (S�; thin
line) pressure pulsation components.

Fig. 15. Water-filled pipe: Base spectrum Sm—thick line. Shaded area represents spectral range applicable to the entire

pipe.
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The developed methodology is limited to frequencies which are well below the pipe ring
frequency, i.e., where only simple waves can propagate. Expressions and diagrams given in
Section 2 can help the reader to find out the permissible frequency range for each particular
case.
The developed methodology may suffer from the influence of longitudinal vibrations of the pipe

producing internal pressure which may adversely superimpose on pressure fluctuations initially of
fluid-borne origin. This influence was found to be negligible in the case of a light fluid, but should
be checked if a heavy fluid is contained in the pipe.
The method for experimental identification of field quantities uses three transducers only. As

the developed method is basically an inverse one, singular frequencies exist at or close to which
signal conditioning is poor. These frequencies are related to the geometry of transducer array. In
order to avoid ill conditioning, an additional transducer may be used to provide better
conditioning based on extra combination of signals.

Appendix A. Energy relationship between pressure of fluid and longitudinal waves

The pressure in the pipe due to fluid and longitudinal waves (temporal term omitted) reads

pðxÞ ¼ pf ðxÞ þ psðxÞ ¼ ðPfþe
�jkf x þ Pf�e

jkf xÞ þ ðPsþe
�jksx þ Ps�e

jksxÞ; ðA:1Þ

with P denoting complex pressure amplitudes and subscripts + and � denoting waves
propagating in positive and negative directions. For the sake of simplicity the flow velocity is set
to zero as it will not affect the results of this section providing the Mach number is low.
The spatially averaged mean-square value of the pressure will thus be

/ %p2S ¼ lim
L-N

1

2L

Z L

�L

%p2ðxÞ dx ¼ 1
2
ðjPfþj2 þ jPf�j2 þ jPsþj2 þ jPs�j2Þ;

with brackets denoting spatial average and overbars time average. By denoting the ratios of
amplitudes of oppositely travelling waves by r, the space-averaged mean-square pressure
becomes

/ %p
2S ¼ 1

2
ð1þ r2f ÞjPfþj2 þ ð1þ r2s ÞjPsþj2

� �
¼ / %p

2
f Sþ/ %p

2
sS; r ¼ jP�=Pþj: ðA:2Þ

The space-averaged intensity in the fluid, i.e., the real part of the product between the pressure
and complex conjugate of fluid particle velocity vf, follows from Eqs. (A.1) and (A.2):

vf ¼
j

orf

qp
qx

-/If S ¼ 1
2/Rðp 
 vnf ÞS

¼
1

2rf csN

zf ð1� r2f Þ Pfþ
�� ��2þzsð1� r2s Þ Psþj j2

h i
; ðA:3Þ

the asterisk denoting complex conjugate. It should be noted that vf and If denote global fluid-
borne quantities, i.e., such that are contributed by both f and s waves.
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Likewise, the space-averaged intensity in the pipe wall, equal to the real part of the product
between the axial stress s and complex conjugate of axial velocity in the wall vs; will be

r ¼
E

1� u2
qu

qx
-/IsS ¼ � 1

2/Rðr 
 vns ÞS

¼
EcsNO2

2a2ð1� u2Þ
½zf ð1� r2f ÞjUfþj2 þ zsð1� r2s ÞjUsþj2�; ðA:4Þ

with U denoting the complex amplitude of axial wave displacement. Once again, vs and Is denote
global solid-borne quantities.
The following relationship between the amplitudes of pressure and axial displacement, valid for

either fluid or longitudinal waves, can be deduced from [9]

Uj j
Pj j

¼
G
O
; G ¼

ua

2rf c2sN
H; H ¼

zðc2sN=c2fN � z2Þ

z2 � 1
: ðA:5Þ

The energy flow is obtained by multiplying the intensity with the relevant section area:

/Wf S ¼ pða � hÞ2/If S; /WsS ¼ 2p ah/IsS ðA:6Þ

By combining Eqs. (A.3)–(A.6) the desired relationship is obtained between the ratio of spatially
averaged mean-square pressures due to longitudinal and fluid waves and the ratio of spatially
averaged energy flows in the fluid and the pipe wall:

/ %p2sS
/ %p2f S

¼
j1� r2f jð1þ r2s Þ

j1� r2s jð1þ r2f Þ
F; ðA:7Þ

where

F ¼
zf

zs

GR � H2
f

H2
s � GR

; R ¼
/WsS
/Wf S

����
����; G ¼

2

u2
a

h
�

h

a

� �
rf

rs

: ðA:7aÞ

Energy flow can either be positive or negative. In the context of the present analysis the absolute
value of energy flow is of concern, thus the appropriate notation in Eqs. (A.7) and (A.7a). As a
consequence, F has to be always positive. Since G > 0 and R > 0; Eq. (A.7a) shows that this will
hold only between certain boundaries of the energy ratio R:

H2
f

G
oRo

H2
s

G
:

In other words, the energy cannot be shared by the fluid and the wall in an arbitrary way, but has
to stay bounded within certain limits. In particular, energy in one of the two media cannot
be zero.
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